
1

knowles.com | AN19 DC BLOCKING FILTERS
© 2017, Knowles Electronics, LLC, Itasca, IL, USA, All Rights Reserved.

Knowles and the logo are trademarks of Knowles Electronics, LLC.

DC BLOCKING FILTERS

DC offset often exists in the microphone output. This can be removed with a DC blocking filter to provide clean
audio for downstream signal processing. This document describes a relatively simple implementation that can
be used to block DC offset in many applications. It also includes an example fixed point implementation.

APPLICATION NOTE AN19

1

DESIGN
The common design of a DC blocking filter is with one pole and one
zero. Its transfer function, H(z), is defined as:

The coefficient “a” determines the cut off frequency depending on the
system sample rate.

Larger “a” coefficients produce a slower DC blocking response but
with less attenuation at lower frequencies. Conversely, smaller “a”
coefficients achieve a faster DC blocking response but with more
low-frequency attenuation. Choosing the best coefficient value is
always a trade-off in applications.

Some applications require both during the startup stage. That is, the
filter must have a quick DC blocking response while having minimal
attenuation at the lower frequencies during normal operation. In this
scenario, the goal can be achieved by choosing a smaller DC blocking
filter coefficient at startup and switching to a larger coefficient one
once the filter is blocking all or most of the DC offset. An audible glitch
could occur during the switch, so muting the audio output may be
necessary during the transition of coefficients.

Typically, designers have flexibility in choosing coefficients.
Implementation may also limit this flexibility. For example, in a
floating point implementation, coefficients of (1-2-11) = 0.99951171875
or (1-2-12) = 0.999755859375 may work for a typical DC Blocking filter.
However, filter parameters chosen for optimal precision in a fixed-point
implementation typically utilize filter coefficents less than 0.999
(eg. a ≤ (1-2-9) = 0.998046875).

For faster startup time, choose a smaller coefficient tailored to
the application.

For a coefficient of 0.99951171875, Table 1 shows the -3 dB cut off
frequency (Low Frequency Roll Off or LFRO) for various sample rates.

Table 1: Filter characteristics with a = 1-2-11 = 0.99951171875

Sample Rate (Hz) -3 dB Cutoff
Frequency (Hz)

20 Hz
Attenuation (db)

8000 .625 -0.0042

16000 1.250 -0.0169

24000 1.875 -0.0380

32000 2.500 -0.0673

48000 3.750 -0.1501

Similarly, Table 2 shows the cut off frequency for various sample rates
for a coefficient of 0.998046875.

You can note the higher LFRO frequency and corresponding
attenuation at 20 Hz.

Table 2: Filter characteristics with a = 1-2-9 = 0.998046875

Sample Rate (Hz) -3 dB Cutoff
Frequency (Hz)

20 Hz
Attenuation (db)

8000 2.500 -0.0673

16000 5.000 -0.2633

24000 7.500 -0.5714

32000 10.000 -0.9691

48000 15.000 -1.9382

The filter’s frequency response for a sampling rate (Fs) of 48 kHz for
various filter coefficients is shown in Figure 1.

 1 - z -1
1 - a * z -1

H (z) =

Knowles Corporation
1151 Maplewood Drive
Itasca, Illinois 60143

Phone: 1 (630) 250-5100
Fax: 1 (630) 250-0575
sales@knowles.com

Model/Reference Number:
APPLICATION NOTE AN19
© 2017, Knowles Electronics, LLC

 /*

	 	*	File						:	DC_Blocking_filter.c

 *

	 	*	Copyright	(C)	2017	Knowles	Electronics,

	 	*	Itasca,	IL	USA,	All	Rights	Reserved																													

 *

 */

	 #include	<stdio.h>

	 #define	A1	32511	//	(1-2^(-7))					Q32:1.31

	 #define	TO_16BIT_SHIFT	15

	 #define	MAX_Uint32_PCMBIT_SIZE	4294967296

	 #define	MAX_UNSIGN_PCMBIT_SIZE	65536

	 #define	MAX_SIGN_POS_PCMBIT_SIZE	32768

	 #define	MAX_SIGN_NEG_PCMBIT_SIZE	-32768

	 static	Int16	x_prev=0;

	 static	Int32	y_prev=0;

	 void	dc_filter(Uint16	*pcmIn)	

 {

DC BLOCKING FILTERS

Figure 1: Filter Frequency Response, Fs=48kHz

Also important to filter performance is DC blocking time. As described
earlier, smaller coefficients will provide faster blocking times, but have
more low-frequency attenuation. Figure 2 below shows blocking time
for various coefficients.

Figure 2: Filter DC Blocking Time, Fs=48kHz

IMPLEMENTATION
Reference MATLAB and fixed-point C code are shown here
for demonstration purposes

MATLAB code for the filter example is:
		function	y	=	DCBlock	(x,	c)		%	c	-	coefficient

	 b	=	[1	–	1];	 	 %	filter	coefficient	b

	 a	=	[1	–	c];	 	 %	filter	coefficient	a

	 y	=	filter	(b,a,x);

 end

	 	 Int16	sampleIn,	delta_x,	sampleOut;

	 	 Int32	a1_y_prev;

	 	 sampleIn	=	(Int16)*pcmIn;

	 	 delta_x	=	sampleIn-x_prev;

	 	 a1_y_prev	=	A1*y_prev/MAX_SIGN_POS_	PCMBIT_SIZE;

	 	 sampleOut	=	delta_x+(Int16)a1_y_prev;

	 	 x_prev	=	sampleIn;

	 	 y_prev	=	(Int32)sampleOut;

	 	 *pcmIn	=	(Uint16)sampleOut;

 }

Information contained herein is subject to change without notice.
It may be used by a party at their own discretion and risk. We do not
guarantee any results or assume any liability in connection with its use.
This publication is not to be taken as a license to operate under any
existing patents.

A fixed-point C reference code example is:

2

